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For a spectrum-generating algebra of classical observables, it is proven that the 
phase space dynamics simplifies to a Hamiltonian system on submanifolds of the 
algebra's dual. These submanifolds are coadjoint orbits if the algebra arises from 
a symplectic group action. If  the Hamiltonian splits into the sum of  a function 
of the algebra generators plus a commuting part, then the dynamics transfers to 
the dual space and an explicit formula is given for the flow vector field on the 
coadjoint orbits. A unique feature of the presentation is that all constructions 
are at the Lie algebra level. 

1. INTRODUCTION 

Symmetry plays an important role in simplifying the equations of 
motion that arise in physics. In classical mechanics, symmetry gives certain 
observables, such as energy and angular momentum, which are constant on 
the phase space orbits of the system. The behavior of these observables 
often provides the crucial information needed to understand the system. In 
quantum mechanics, symmetry helps in a different way. Symmetry tells us 
that the problem of solving Schr6dinger's equation can be reduced to consid- 
ering states that occur in irreducible representations of the symmetry group. 
Moreover, this reduction enables one to extract information about the expec- 
tation values and matrix elements of the symmetry operators in the quantum 
system. 

It was realized early in the development of quantum mechanics that 
part of the idea involved in the application of symmetry could still be used 
even when there was no symmetry in the system. This idea is that under 
certain circumstances one can determine the time evolution of some of the 
important observables in the problem without actually finding a complete 
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description of the physical state in question. This idea is particularly crucial 
in nuclear physics, where the complete n-body system has a time evolution 
that is exceedingly complex. In one of the first models of nuclear collective 
motion, Elliott (1958) suggested investigating a class of observables which 
provide a measure of the general shape of the nucleus. He used the total 
orbital angular momentum and the quadrupole tensor as the relevant collec- 
tive observables. These observables close under commutation to form an 8- 
dimensional Lie algebra isomorphic to su(3). Although it is not unreasonable 
to assume that the angular momentum of the system arises from symmetry, 
it is completely unnatural to assume that the quadrupole tensor does. The 
attention on the quadrupole tensor arises from its importance as a collective 
observable and not from any symmetry considerations. However, one can 
make a natural physical assumption about the problem that does enable one 
to determine the dynamics of these observables. Rather than assuming the 
Hamiltonian enjoys some symmetry property with respect to the special 
observables, it is enough to assume that the Hamiltonian is simply a function 
of these observables alone. Under this assumption the problem can again be 
reduced to an irreducible representation of su(3), even though there is no 
symmetry involved. A number of different applications of these ideas have 
been made in atomic (Barut and Kleinart, 1967), condensed matter (Sturge, 
t967), nuclear (Goshen and Lipkin, 1959; Rowe, '1985; Buck et al., 1979; 
Iachello and Arima, 1987), and particle physics (Guralnik et al., 1968; Beg 
and Sirlin, 1974). A Lie algebra of observables that bears this relation to 
the Hamiltonian is called a dynamical algebra (Barut et al., 1986). 

The question that we would like to address in this paper is how to give 
a precise formulation to a similar idea in classical mechanics. We assume 
that we are given a collection of physical observables which forms a Lie 
algebra with the Poisson bracket. Our objective is to find the dynamics of 
these observables. It turns out that as long as the Hamiltonian is a function 
of these observables alone, we can simplify the dynamics considerably. There 
are symplectic manifolds associated with the Lie algebra of observables, 
called coadjoint orbits, the points of which correspond to all the possible 
values the observables in the Lie algebra can take on. Moreover, there is 
a Hamiltonian on each coadjoint orbit which corresponds to the original 
Hamiltonian and which determines exactly the time evolution of all of the 
observables in the Lie algebra. Thus the coadjoint orbits of the Lie algebra 
play a role analogous to the role played by irreducible representations in 
quantum mechanics. Since the coadjoint orbits always have dimension less 
than the dimension of the Lie algebra of observables itself, this reduction 
usually results in a much simpler problem. 

In Section 2 we discuss the dynamics of the observables in general. If 
we do not insist that the dynamics of the observables be Hamiltonian, then 
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a slightly weaker condition on the Hamiltonian is needed. This is simply 
that the Poisson bracket of the Hamiltonian with every observable in the 
algebra be a function only of observables in the algebra. This condition has 
arisen in quantum mechanics, and a Lie algebra of observables that satisfies 
this condition is called a spectrum-generating Lie algebra (Dothan et al., 
1965; Dothan, 1970; Joseph, 1974). 

In Section 3 we give the basic theorem, which states when the dynamics 
of the total phase space translates to Hamiltonian dynamics on the coadjoint 
orbits. The basic result is Theorem 3.6, which states that if the Hamiltonian 
is a sum of one part which is a function of the special observables only 
together with another part which commutes with all the special observables, 
then the dynamics transfers to the coadjoint orbits. 

In Section 4 we apply these ideas to some examples. 

2. D Y N A M I C S  ON LIE ALGEBRAS OF OBSERVABLES 

We start by establishing the notation for the basic concepts that we will 
use in the paper. 

Notation 2.1: 
(a) P is a symplectic manifold with symplectic form co. 
(b) F(P) is the set of observables on P; that is, the set of smooth, real- 

valued functions on P. 
(c) If  0 is a one-form on P, then 0 ~ is the vector field defined by the 

relation 

c0(0 #, v)= O(v) V w T ( P )  

(d) Let f ,  geF(P) .  The Poisson bracket {f, g} is defined by 

{ f ,  g} = co( d f  #, dg # ) = dg# ( f ) = _ d f #  (g) 

F(P) is a Lie algebra with multiplication defined by the Poisson 
bracket. 

(e) a is a Lie subalgebra of F(P). a* = Horn(a, R) is the dual vector 
space to a. 

(f) Let {f~} be a vector space basis for a. Define coordinates x~ for a* 
by x g ( g * ) = g * ( f ) ;  that is, x ~ = f  ** . 

(g) Define cs~ b3 {f~,fj} =Ek c~fk. 
(h) F(a) denotes the set of real-valued functions on a. 

Definition 2.2: 
(a) p : P -+ a* is defined as follows: 

P ( P ) ( f )  = f ( P )  
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p is called the moment map. Using the coordinates of  Notation 2.1 (f), we 
have p ( p ) =  (j]  (p), J ~ ( p ) , . . .  ,fn(P)), or in other words, xio p = f .  

(b) Define p*: F(a*) ~ F(P)  by 

P*(g)(p) =g(P(p) )  

If  we write g in coordinates as g(x l ,  xz . . . .  , x , ) ,  we have 

P*(g)(P) =g(J ]  (p  ), f 2(p), . . . , f~ (p  ) ). 

Next we give a natural assumption for the dynamics on P to transfer 
over to the dynamics on a* by way of  the moment map. 

Definition 2.3. Let h be the Hamiltonian on P. a is called h-spectrum 
generating if { h , f }  ep*(F(a*))  for eve ry fea .  

Now, if a is an h-spectrum-generating algebra, we have that there are 
functions gieF(a*)  such that 

f : -  - { h , f }  =gi(f~ . . . . .  f , )  

This suggests that the vector field H on a* defined by 

H = Z g~ d / d x i  

should correspond to the Hamiltonian vector field dh #. 

Theorem 2.4. Let a be an h-spectrum-generating algebra. Then, on p(P) 
we have that 

Dp(dh ~ ) = H 

where H = ~ gi d / d x i  and - { h , f }  = p * ( g i ) -  

Proo f  We show this equality by showing that both Dp(dh ~ ) and H 
give the same resuJt when they differentiate the coordinate functions x~. We 
have 

Dp(dh # )(xt)(p(p))  = dh # (x~ o p)(p) = d h ~ ( f ) ( p )  = - {h,f,.} (p) 

We also have 

H ( x i ) ( p ( p ) )  =g;(p(p) )  = (P*gi)(P) = { h , f } ( p )  

which completes the proof. �9 
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The following is an important special case of h-spectrum-generating algebras. 

Theorem 2.5. If  h~p*(F(a*)), then a is an h-spectrum-generating 
algebra. In particular, if h'EF(a*) is any function with h=h'o p, then 

Dp(dh # ) = H 

on p(P), where 

H= - • [dh'/dxjlc~xk d/dx, 

Proof Let h=p*(h')=h'o p. First we calculate {h,fi} using the fact 
that a is an algebra and hence {f j , f}  = 2  c~fk for some constants c~.: 

{h,fi} =dh(df~) 

=dh'o Dp(df~) 

= ~  [dh'/dxj] dxjo Dp(df~) 

=~, [dh'/dx A d(xjo p) (d f f )  

= Z [dh'/dxj] dfj (df?) 

= Z [dh'/dxj] { ~ , f }  

= Z [dh'/dxj] c~fk 

= p*(~ [dh'/dxj]c~,xk) (*) 

Thus {h, f }  =p*(g,) for the gi=y,  [dh'/dxj]C~Xk. We now find that a is an 
h-spectrum-generating algebra by observing that {h, ~ a~} = p*(y~ aigi). We 
obtain the formula for H by using (*) together with Theorem 2.4. This 
completes the result. �9 

3. HAMILTONIAN DYNAMICS ON A LIE ALGEBRA OF 
OBSERVABLES 

In this section we will show that if there is an h' such that h = h' o p [i.e., 
if h~p*(F(a*))], then the H defined in Theorem 2.5 will be a Hamiltonian 
vector field on certain submanifolds of a*. We call these submanifolds toad- 
joint orbits because they would correspond to the coadjoint orbits of a Lie 
group if a arises as the algebra of observables associated with a symplectic 
action of the group on P (Kirillov, 1962; Kazhdan et al., 1978; Sternberg, 
1975). Although there always is a Lie group G which corresponds to a, there 
may not be any action of G on P because the vector fields df # fo r fEa  may 
not be complete. 

There does not seem to be a clear physical reason why such a group 
action should be necessary to discuss the dynamics of the observables in a. 
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Fortunately the mathematics needed to relate homogeneous symplecfic G 
manifolds to coadjoint orbits works perfectly well on the algebra level 
without recourse to groups. In fact, the mathematics even becomes some- 
what easier, and we include what we need below for the sake of completeness. 
The only notable feature which is different in the algebra case is that the 
image of P under the momentum map may only contain part of a given 
coadjoint orbit and so the Hamiltonian on a coadjoint orbit which corre- 
sponds to h need not be uniquely defined on the whole orbit. This point has 
no effect on the results concerning the dynamics; it serves only to warn us 
to include assumptions about being inside p(P) in our results. 

We start by defining coadjoint orbits without recourse to any group. 

Definition 3.1. For e a c h f  = ~. a~,ea define the following vector field on 
a* : 

(Recall {J;,fj} = ~k c~fk .) 

Lemma 3.2. We have 

5gy= ~ aie~xk d/dxj 
i,j,k 

Proof The proof of this is a straightforward computation using the 
Jacobi identity for { - , -  }. �9 

This lemma implies that the distribution D =  {~ f : f e a }  is involutive. 
The Frobenius theorem then states that a* is the disjoint union of submani- 
folds each of which has D as its tangent space. These submanifolds are the 
coadjoint orbits of the corresponding group action. We establish a notation 
for them below. 

Definition 3.3: 
(a) If  Fea*,  we let OF denote the maximal integral submanifold of D. 

OF is called a coadjoint orbit. If we do not need to specify that a 
coadjoint orbit contains some specific F, we may denote the orbit 
simply by O: 

(b) Let O be a coadjoint orbit. Define a two-form co* on 0 as follows: 

co*(5('f, ~gqg)(F) = F({f,  g} ) gFeO 

The following lemma gives us the basic tools that we need. 

Lemma 3. 4." 
(a) L e t f = ~  a~,., g=Y'  bf,, and F =  (x~ . . . . .  x,). Then 

co *( SYy, 5~g)(F) = ~ C}Xkaib j 
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(b) co* is a symplectic form on O. 
(c) Again let f=12  a %  Using the symplectic form co*, we find that 

(I2 d x , )  = - 

and hence, 

dxff -- - ~. c}xk d/dx: 
j , k  

Proof Part (a) follows directly from the definition of co*. To see (b), 
we must show that co* is well defined, nondegenerate, and closed. To show 
that co* is well defined it is enough to show that co*(~%, ~%)(F) is 0 if ~ s (F )  
is O. When 5f f (F)= 0 we have 

SO 

Z a'c~ Xk = 0 Vj 
i,k 

~, a~c~xkb: = 0 
i,j,k 

as desired. Next we show nondegeneracy. Assume 

co*(Sf z, ~g ) (F)=0  VgEa 

Then we have 

c~.xka:b: = 0 Vb:~ R 

Thus 12 k i cUxka =0, Vj, so that 

&ff= E aic~ x~ d/dxb=O 
i , j ,k 

as desired. We must only show co* is closed. Let h = ~]i c~. A direct computa- 
tion gives the following two formulas. Use the formulas to simplify the six 
terms in dco*(5~:, ~g,  ~h): 

l m i L j _ k  v ~fco*(Sfg, ~C#h)(F)= Z CimCjgao c ~.l 
i,j, lc 
I,m 

and 

1 m D j  k co*([~f, ~%1, ~CPh)(F) = Z C,,,kCi:ao C xt 
i , j ,k 
I,m 

902/32/5-11 
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Then use the Jacobi identity two times to find dco*= 0. We finish with (c). 
We have from (a) 

Now 

co* (~f ,  ~vg) (F) = 2 ckx~ aibj 

- Z  a' dxi(s Z ai dxi[i~kbiC~xk d/dxj l  

= - Z ckxk biaj 

= co*(~f, ~g)(F) 

The proof is now complete. �9 

We will now show that if hep*(F(a*)),  then not only will H be tangent 
to every coadjoint orbit O, but H will also be a Hamiltonian vector field on 
O. 

Theorem 3.5. Let h=h ' o p, O be a coadjoint orbit, and use co* to define 
# on O. Then we have 

H = (dh') # 

on p(P). 

Proof. Use Lemma 3.4(c) to find that 

(dh') # = ~ [dh'/dxj](dxj) # 

= - ~ [dh'/dx A ~ c~x~ d/dx, 
1,k 

Theorem 2.5 now completes the proofi �9 

Probably the most interesting theorem from the point of view of applica- 
tions is not the theorem that assumes that the Hamiltonian is a function 
only of the special observables, but rather the theorem that applies to Hamil- 
tonians whose only terms that do not depend on the special observables 
commute with those observables. We state this result precisely below. 

Theorem 3.6. Let h=ho+hi ,  where ho=h~ o p and {h l , f }  =0 for all 

fEa. 
Then 

H =  ' ~ (dho) = - ~ [dh6/dxi]ck xk d /dx  s 
i,j,k 

Proof Since {hi , f}  =0  for a l l f sa ,  we have that a is both an h-algebra 
and an h0-algebra. Moreover, H (corresponding to h) will be the same as H0 
(corresponding to h0) (see Theorem 2.4). Thus the result follows from 
Theorem 2.5. �9 
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4. APPLICATIONS 

We would like to start this section with a discussion of the relativistic 
free particle, which is one of the problems in which coadjoint orbits have 
already been seen to play a fundamental role (Souriau, 1970). If the classical 
configuration space for the relativistic free particle is taken to be Minkowski 
space, then all the quantum states obtained by the conventional quantization 
procedure have spin 0. Thus, it seemed that the quantum description of a 
free particle was not the "quantization" of any classical system~ However, 
it was discovered that if one quantizes the classical systems defined on the 
coadjoint orbits of the Poincar6 group, then one obtains the full quantum 
description of the free particle with arbitrary spin. The condition that the 
classical systems on the orbits can be quantized corresponds exactly to the 
Bohr-Sommerfeld quantization condition. Thus the quantum relativistic free 
particle does arise as the quantization of classical systems. The only question 
that remains is why should the coadjoint orbits of the Poincarb group be the 
symplectic manifolds relevant to the free particle? One answer to this ques- 
tion is that it is natural for the phase space of a free particle to be a symplectic 
manifold which is homogeneous under the action of the Poincar6 group, 
and every such manifold is a covering space of a coadjoint orbit. This is the 
classical form of the criterion applied by Wignr (1939) to determine the 
quantum Hilbert spaces for free particles from the irreducible unitary rep- 
resentations of the Poincar6 group. 

The ideas in this paper give rise to a different way to answer this ques- 
tion. In trying to describe the free particle, we do not attempt to actually 
describe its configuration space, because it may have internal degrees of 
freedom in which we are not interested. Instead we focus on the aspects of 
the free particle we do wish to look at. In this case it seems natural to try 
to describe the particle's momentum and angular momentum. We do not 
need to know the exact form these observables take in the problem; we 
only need to know what their commutation relations are under the Poisson 
bracket. The natural physical assumption is that these observables form the 
Lie algebra of the Poincar6 group. As of yet, we have not used anything 
that is specific to the free particle. The fact that we are dealing with a free 
particle gives information about the Hamiltonian. Normally the Hamil- 
tonian of a free particle is a function of the momenta alone. Thus it is not 
unnatural to assume that the free particle Hamiltonian is a function of the 
observables in the Poincar6 Lie algebra, and we may use Theorem 3.5 to 
reduce the dynamics to the coadjoint orbits of the Poincarb Lie algebra. In 
this way, one arrives at the Classical symplectic manifolds which are needed 
to give a full quantum description of the relativistic free particle. 

A second interesting example is the classical theory of rotating self- 
gravitating fluids formulated by Dirichlet and Riemann and applied to rotat- 
ing stars by Chandrasekhar (1969) and Dyson (1968). A Riemann ellipsoid 
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is a fluid with an ellipsoidal boundary whose motion depends linearly on 
position. The observables characterizing a Riemann ellipsoid span the Lie 
algebra gcm(3), which signifies the general collective motion algebra in three 
spatial dimensions (Buck et al., 1979; Rosensteel and Ihrig, 1979; Guillemin 
and Sternberg, 1980). The algebra gcm(3) =- [R6]g/(3, R) is a semidirect sum 
of an Abelian six-dimensional ideal spanned by the symmetric inertia tensor 
Qu with the Lie algebra of the general linear group gl (3, R), whose genera- 
tors form the shear tensor N/j, 1 <_i,j<_3. 

The linear velocity field is determined uniquely by the value of the 
shear tensor. The lengths and directions of the ellipsoid's principal axes are 
specified by the eigenvalues and eigenvectors of the inertia tensor. 

To reduce the dynamics of Riemann ellipsoids to gem(3) coadjoint 
orbits, the Hamiltonian must be a function of the model observables. The 
potential self-energy V of gravitational attraction is a function of the lengths 
of the principal axes and, hence, is a rotational scalar in the inertia tensor. 
Furthermore, the kinetic energy T for a linear velocity field was shown by 
Cusson (1968) to be a function of the gem(3) observables, T= 
�89 tr(rN �9 Q-~ �9 N). Thus, the dynamics is Hamiltonian on the coadjoint orbit 
space. Note that the gem(3) problem is a special case of Hamiltonian dynam- 
ics with semidirect product dynamical groups (Marsden et al., 1984). 

Theorem 3.6 is applicable to many problems. The simplest is the motion 
of the center of mass, for which the relevant algebra is the Heisenberg algebra 
generated by the position and momentum observables of the center of mass. 
If the potential energy depends only upon the relative distances among the 
constituent particles, then the Hamiltonian splits into the sum of the kinetic 
energy for the center of mass plus the relative Hamiltonian which commutes 
with the Heisenberg algebra. 

A more complicated application of Theorem 3.6 is to n-body problems 
for which the Hamiltonian splits into a collective part expressible in terms 
of the generators of a Lie algebra and an intrinsic part which, at least 
approximately, commutes with the collective algebra observables. The rota- 
tional and Bohr-Mottelson nuclear models fall into this class (Villars and 
Cooper, 1970; Rowe, 1988). 
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